3,744 research outputs found

    Quantum number effects in events with a charged particle at large transverse momentum (charge correlations in jets)

    Get PDF
    Charge correlations of particles in an event with a large p/sub t/ trigger particle have been measured. The correlation length for the charge compensation of the hard scattered parton fragments is the same as observed in nondiffractive inelastic events. Part of the charge of the large p/sub t/ trigger particle is compensated by the soft particles of the 'away jet'. For the spectator fragments the same charge correlation distributions are observed as for nondiffractive inelastic events. (8 refs)

    Teaching Physics Using Virtual Reality

    Get PDF
    We present an investigation of game-like simulations for physics teaching. We report on the effectiveness of the interactive simulation "Real Time Relativity" for learning special relativity. We argue that the simulation not only enhances traditional learning, but also enables new types of learning that challenge the traditional curriculum. The lessons drawn from this work are being applied to the development of a simulation for enhancing the learning of quantum mechanics

    Student experiences of virtual reality - a case study in learning special relativity

    Full text link
    We present a study of student learning through the use of virtual reality. A software package is used to introduce concepts of special relativity to students in a game-like environment where users experience the effects of travelling at near light speeds. From this new perspective, space and time are significantly different to that experienced in everyday life. The study explores how students have worked with this environment and how these students have used this experience in their study of special relativity. A mixed method approach has been taken to evaluate the outcomes of separate implementations of the package at two universities. Students found the simulation to be a positive learning experience and described the subject area as being less abstract after its use. Also, students were more capable of correctly answering concept questions relating to special relativity, and a small but measurable improvement was observed in the final exam

    QuickXsort: Efficient Sorting with n log n - 1.399n +o(n) Comparisons on Average

    Full text link
    In this paper we generalize the idea of QuickHeapsort leading to the notion of QuickXsort. Given some external sorting algorithm X, QuickXsort yields an internal sorting algorithm if X satisfies certain natural conditions. With QuickWeakHeapsort and QuickMergesort we present two examples for the QuickXsort-construction. Both are efficient algorithms that incur approximately n log n - 1.26n +o(n) comparisons on the average. A worst case of n log n + O(n) comparisons can be achieved without significantly affecting the average case. Furthermore, we describe an implementation of MergeInsertion for small n. Taking MergeInsertion as a base case for QuickMergesort, we establish a worst-case efficient sorting algorithm calling for n log n - 1.3999n + o(n) comparisons on average. QuickMergesort with constant size base cases shows the best performance on practical inputs: when sorting integers it is slower by only 15% to STL-Introsort

    Defective synapse maturation and enhanced synaptic plasticity in Shank2(-/-) mice

    Get PDF
    Autism spectrum disorders (ASDs) are neurodevelopmental disorders with a strong genetic aetiology. Since mutations in human SHANK genes have been found in patients with autism, genetic mouse models are employed for a mechanistic understanding of ASDs and the development of therapeutic strategies. In sharp contrast to all studies so far on the function of SHANK proteins, we observe enhanced synaptic plasticity in Shank2(-/-) mice, under various conditions in vitro and in vivo. Reproducing and extending previous results, we here present a plausible mechanistic explanation for the mutants' increased capacity for long-term potentiation (LTP) by describing a synaptic maturation deficit in Shank2(-/-) mice

    The key position: influence of staple location on constrained peptide conformation and binding

    Get PDF
    First published online 29 Sep 2016Constrained α-helical peptides are showing potential as biological probes and therapeutic agents that target protein-protein interactions. However, the factors that determine the optimal constraint locations are still largely unknown. Using the β-integrin/talin protein interaction as a model system, we examine the effect of constraint location on helical conformation, as well as binding affinity, using circular dichroism and NMR spectroscopy. Stapling increased the overall helical content of each integrin-based peptide tested. However, NMR analysis revealed that different regions within the peptide are stabilised, depending on constraint location, and that these differences correlate with the changes observed in talin binding mode and affinity. In addition, we show that examination of the atomic structure of the parent peptide provides insight into the appropriate placement of helical constraints.Kelly L. Keeling, Okki Cho, Denis B. Scanlon, Grant W. Booker, Andrew D. Abell and Kate L. Wegene
    corecore